Phys 404 Spring 2011

Homework 11, CHAPTER 10 Due Thursday, May 5, 2011 @ 12:30 PM

The final exam is May 17, 1:30-3:30 PM, and will cover the entire course. A single 8-1/2" x 11" crib sheet is allowed. No books, electronics/screens, or calculators are allowed.

- 1. K+K, Chapter 10, Problem 1, Parts (a) and (b) only
- 2. K+K, Chapter 10, Problem 2
- 3. K+K, Chapter 10, Problem 3
- **4. K+K, Chapter 10, Problem 4** assume that each three-dimensional harmonic oscillator has allowed energies given by $(n_x+n_y+n_z)\hbar\omega$ - ε_o , where n_x , n_y , and n_z are independent non-negative integers and $-\varepsilon_o$ is the ground state energy.

For part (b) you must actually solve for the latent heat per atom.

- **5.** Given the van der Waals equation of state $\left(P + \frac{N^2 a}{V^2}\right)(V Nb) = N\tau$, eliminate the quantities a, b, and N, in favor of P_c , V_c , and τ_c , defined as $P_c \equiv \frac{a}{27 \ b^2}$, $V_c \equiv 3Nb$, and $\tau_c \equiv \frac{8 \ a}{27 \ b}$. Show that the resulting equation of state is $\left(\frac{P}{P_c} + 3\left(\frac{V_c}{V}\right)^2\right)\left(\frac{V}{V_c} \frac{1}{3}\right) = \frac{8}{3} \frac{\tau}{\tau_c}$.
- **6.** Starting with the "law of corresponding states" $\left(\hat{p} + \frac{3}{\hat{v}^2}\right) \left(\hat{v} \frac{1}{3}\right) = \frac{8}{3}\hat{\tau}$ in terms of the dimensionless quantities $\hat{p} = \frac{P}{P_c}$, $\hat{v} = \frac{V}{V_c}$, and $\hat{\tau} = \frac{\tau}{\tau_c}$, show that the simultaneous conditions $\frac{\partial \hat{p}}{\partial \hat{v}} = 0$, and $\frac{\partial^2 \hat{p}}{\partial \hat{v}^2} = 0$ are satisfied when $\hat{v} = \hat{\tau} = 1$. What is the corresponding value of \hat{p} ? These conditions define the critical point of the van der Waals fluid.